Bayesian Statistics

Siliang Zhang (slzhang at ecnu dot edu dot cn)

Spring 2024, 2025

Course Information:

课程简介 Course Description

《贝叶斯统计学》是为统计学及相关专业的学生开设的课程。在学习完课程中的讲义后,要求学生掌握贝叶斯推断中的基本建模方法,包括单参数和和多参数模型在内的常用模型,以及贝叶斯计算方法,如马尔科夫链蒙特卡洛算法。本课程将在R编程语言的帮助下进行教学。JAGS和一些著名的贝叶斯推断的R软件包,如LearnBayes, R2OpenBUGS, rjags, nimble等将被讲授并用于案例研究。学习本课程要求学生应该有一些基础统计知识和R编程技能。

Bayesian Statistics is a course for students majoring in statistics. After learning the lectures in the course, the students are required to get a good command of basic modeling methods in Bayesian inference, common models including one-parameter and multi-parameter models, and Bayesian computation methods such as Markov chain Monte Carlo algorithms. This course will be taught with the help of the R programming language. WinBUGS/OpenBUGS and some well-known R packages for Bayesian inference, such as LearnBayes, R2OpenBUGS, rjags, nimble, etc. will be taught and used for case studies. Students should have some knowledge of basic statistics and R programming skills.

课程目标 Course Objectives

本课程旨在培养学生运用贝叶斯分析方法数据分析的能力,要求学生:

1. 掌握贝叶斯统计分析中的基本概念、基本理论和计算方法 2. 学会具体数据的贝叶斯建模与分析方法 3. 掌握贝叶斯统计分析的专业词语和表达方法,看懂一些简单的参考文献 4. 学会通过R编程和BUGS及相关包进行贝叶斯统计分析

教材 Textbooks

参考书目 Reference Books

课程内容 Course Content

Chapter Topic (English) Topic (中文) Week
Chapter 1 What is Bayesian Statistics? 什么是贝叶斯统计? 1
Chapter 2 Introduction to R for Bayesian Analysis 针对贝叶斯分析的R介绍 1-2
Chapter 3 Introduction to One-parameter Models: Estimating a Population Proportion 单参数模型介绍: 估计总体的比例 2-3
Chapter 4 Bayesian Inference for a Population Proportion 总体比例的贝叶斯推断 3-4
Chapter 5 Special Considerations in Bayesian Inference 贝叶斯推断中的特殊考虑因素 4-5
Chapter 6 Other One-Parameter Models and Their Conjugate Priors 其他单参数模型及共轭先验 5-6
Chapter 7 Introduction to Multiparameter Models 多参数模型介绍 6-7
Chapter 8 Fitting More Complex Bayesian Models: Markov Chain Monte Carlo 贝叶斯计算拟合更复杂的贝叶斯模型: 马氏链蒙特卡罗方法 7-8
Chapter 9 Bayesian Inference based on BUGS Engines 基于BUGS引擎进行贝叶斯推断 8-9
Chapter 10 Hierarchical Models and More on Convergence Assessment 分层模型及更多收敛性评估 9-10
Chapter 11 Regression and Hierarchical Regression Models 回归与分层回归模型 10-11