Optimization methods

Siliang Zhang (slzhang at ecnu dot edu dot cn)

Autumn 2023

教材

Numerical Optimization by Jorge Nocedal and Stephen J. Wright, Springer, 2006.

辅助教材

最优化:建模、算法与理论(第二版) by 刘浩洋, 户将, 李勇锋,文再文, 高教出版社,2022.

参考材料

课程简介

本课程是为数学、统计学和工程等相关专业的本科生设计的一门非常重要的专业选修课程。优化方法的核心内容是研究如何从一组可能的选择中找出最佳或者“最优”的方法。最优化方法不仅是许多数学和工程学科的基础,同时也在大数据、机器学习和人工智能等现代技术领域中发挥着至关重要的作用。最优化的各种方法一直被广泛地应用于实际问题的解决。

本课程主要讲授(1)最优化的基本理论:包括函数、导数和梯度,凸性和凹性的概念,线性规划的基本理论和方法,以及非线性优化的基本理论和方法;(2)典型优化问题和方法:包括线性规划,非线性优化,包括无约束优化和约束优化,拉格朗日乘数法和KKT条件;(3)优化算法和实践:包括梯度下降法(GD)、随机梯度下降法(SGD)、牛顿-拉夫森法(Newton-Raphson Method)、内点法等的原理和Python实现,以及如何用Python解决实际的最优化问题;(4)通过案例学习的方式,了解最优化在不同领域,如统计学、机器学习、运筹学、经济学等领域的应用。本课程旨在帮助学生理解和掌握最优化的基本理论和方法,以及它们在实际问题中的应用。

This course is a highly important elective designed for undergraduate students majoring in mathematics, statistics, engineering, and other related fields. The core content of optimization methods revolves around studying how to find the best or “optimal” solution from a set of possible choices. Optimization methods not only form the foundation of many mathematical and engineering disciplines but also play a vital role in modern technological areas such as big data, machine learning, and artificial intelligence. Various optimization methods have been extensively applied to solve real-world problems.

The course primarily instructs on:

(1) Basic theories of optimization: encompassing functions, derivatives and gradients, concepts of convexity and concavity, fundamental theories and methods of linear programming, and basic theories and methods of nonlinear optimization;

(2) Typical optimization problems and methods: including linear programming, nonlinear optimization, both unconstrained and constrained optimization, the Lagrange multiplier method, and KKT conditions;

(3) Optimization algorithms and practice: covering the principles and Python implementations of Gradient Descent (GD), Stochastic Gradient Descent (SGD), Newton-Raphson Method, Interior Point Method, etc., and how to address actual optimization problems using Python;

(4) Through case studies, understanding the applications of optimization in various fields such as statistics, machine learning, operations research, economics, etc.

The objective of this course is to assist students in understanding and mastering the fundamental theories and methods of optimization, along with their applications in addressing real-world problems.

课程目标

课程内容

章节 主题
第一章 最优化方法导论和Python基础 导论 1-2
第一章 最优化方法导论和Python基础 Python基础与最优化 2
第二章 最优化基本理论与方法 函数、导数和梯度 3
第二章 最优化基本理论与方法 凸性和凹性 4
第三章 典型优化问题与最优性理论 线性规划与最小二乘问题 5
第三章 典型优化问题与最优性理论 ❖复杂优化问题❖ 6
第三章 典型优化问题与最优性理论 ❖高级优化问题❖ 7
第三章 典型优化问题与最优性理论 ❖最优性理论(上)❖ 8
第三章 典型优化问题与最优性理论 ❖最优性理论(下)❖ 9
第四章 优化算法及其实现 无约束优化算法 10
第四章 优化算法及其实现 约束优化算法 11
高级优化主题选讲 Proximal算法、流形约束优化、非凸优化等 12